If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| x+x+x-3=33-x | | (3x-4)=49 | | 4(2x-1)=6x+6 | | 2/3x-1=3/4x+2 | | 753=j−–646 | | 3(x-6)=5(2x-3) | | 9(8-7r)=-54 | | 96-w=277 | | 3x+15=3(x+4)+3 | | 2x+70-70=90+70 | | 5x-6=-5x-11 | | 29=4x13+x | | 3(3x-4)=2(x-9) | | 16+(-1)=-25+10x | | 55-11u=5 | | 6/7e=15 | | 18x-1+23x+17=90 | | 2(u-1)=-7u-11 | | -4(x-9)=7x-41 | | 3/4x2-5/12x=0 | | 2x-7=-4x+2 | | x+7x-20=-12 | | 7/12a-7=1/4a | | 8x-16=x2 | | 3x+x+4=-20 | | 6y-4(2y-6)=10 | | 8x-9x-6=7x-5x-15 | | -6n-2=50 | | F(x)=9+x^2 | | 3h+2=-2h-8 | | 26+2h=14+3h | | 7-5(x+3)=x-8 |